26 research outputs found

    Access to undergraduate research experiences at a large research university

    Full text link
    The American Physical Society recently released a statement calling on all university physics departments to provide or facilitate access to research experiences for all undergraduate students. In response, we investigated the current status of access to undergraduate research at University of Colorado Boulder (CU), a large research institution where the number of undergraduate physics majors outnumber faculty by roughly ten to one. We created and administered two surveys within CU's Physics Department: one probed undergraduate students' familiarity with, and participation in, research; the other probed faculty members' experiences as research mentors to undergraduates. We describe the development of these instruments, our results, and our corresponding evidence-based recommendations for improving local access to undergraduate research experiences. Reflecting on our work, we make several connections to an institutional change framework and note how other universities and colleges might adapt our process.Comment: 4 pages, 3 figures, 1 table; Submitted to 2015 PERC Proceeding

    Instructor perspectives on iteration during upper-division optics lab activities

    Full text link
    Although developing proficiency with modeling is a nationally endorsed learning outcome for upper-division undergraduate physics lab courses, no corresponding research-based assessments exist. Our longterm goal is to develop assessments of students' modeling ability that are relevant across multiple upper-division lab contexts. To this end, we interviewed 19 instructors from 16 institutions about optics lab activities that incorporate photodiodes. Interviews focused on how those activities were designed to engage students in some aspects of modeling. We find that, according to many interviewees, iteration is an important aspect of modeling. In addition, interviewees described four distinct types of iteration: revising apparatuses, revising models, revising data-taking procedures, and repeating data collection using existing apparatuses and procedures. We provide examples of each type of iteration, and discuss implications for the development of future modeling assessments.Comment: 4 pages, 1 figure; under revie

    Correlating students' views about experimental physics with their sense of project ownership

    Full text link
    Multiweek projects in physics labs can engage students in authentic experimentation practices, and it is important to understand student experiences during projects along multiple dimensions. To this end, we conducted an exploratory quantitative investigation to look for connections between students' pre-project views about experimental physics and their post-project sense of project ownership. We administered the Colorado Learning Attitudes About Science Survey for Experimental Physics (E-CLASS) and the Project Ownership Survey (POS) to 96 students enrolled in 6 lab courses at 5 universities. E-CLASS and POS scores were positively correlated, suggesting that students' views about experimentation may be linked to their ownership of projects. This finding motivates future studies that could explore whether these constructs are causally related.Comment: 4 pages, 1 figure, submitted to 2018 PERC Proceeding

    Student ownership of projects in an upper-division optics laboratory course: A multiple case study of successful experiences

    Full text link
    We investigate students' sense of ownership of multiweek final projects in an upper-division optics lab course. Using a multiple case study approach, we describe three student projects in detail. Within-case analyses focused on identifying key issues in each project, and constructing chronological descriptions of those events. Cross-case analysis focused on identifying emergent themes with respect to five dimensions of project ownership: student agency, instructor mentorship, peer collaboration, interest and value, and affective responses. Our within- and cross-case analyses yielded three major findings. First, coupling division of labor with collective brainstorming can help balance student agency, instructor mentorship, and peer collaboration. Second, students' interest in the project and perceptions of its value can increase over time; initial student interest in the project topic is not a necessary condition for student ownership of the project. Third, student ownership is characterized by a wide range of emotions that fluctuate as students alternate between extended periods of struggle and moments of success while working on their projects. These findings not only extend the literature on student ownership into a new educational domain---namely, upper-division physics labs---they also have concrete implications for the design of experimental physics projects in courses for which student ownership is a desired learning outcome. We describe the course and projects in sufficient detail that others can adapt our results to their particular contexts.Comment: 22 pages, 3 tables, submitted to Phys. Rev. PE

    Using think-aloud interviews to characterize model-based reasoning in electronics for a laboratory course assessment

    Full text link
    Models of physical systems are used to explain and predict experimental results and observations. The Modeling Framework for Experimental Physics describes the process by which physicists revise their models to account for the newly acquired observations, or change their apparatus to better represent their models when they encounter discrepancies between actual and expected behavior of a system. While modeling is a nationally recognized learning outcome for undergraduate physics lab courses, no assessments of students' model-based reasoning exist for upper-division labs. As part of a larger effort to create two assessments of students' modeling abilities, we used the Modeling Framework to develop and code think-aloud problem-solving activities centered on investigating an inverting amplifier circuit. This study is the second phase of a multiphase assessment instrument development process. Here, we focus on characterizing the range of modeling pathways students employ while interpreting the output signal of a circuit functioning far outside its recommended operation range. We end by discussing four outcomes of this work: (1) Students engaged in all modeling subtasks, and they spent the most time making measurements, making comparisons, and enacting revisions; (2) Each subtask occurred in close temporal proximity to all over subtasks; (3) Sometimes, students propose causes that do not follow logically from observed discrepancies; (4) Similarly, students often rely on their experiential knowledge and enact revisions that do not follow logically from articulated proposed causes.Comment: 18 pages, 5 figure
    corecore